Making Live Programming Practical by
Bridging the Gap between
Trial-and-Error Development
and Unit Testing

Tomoki Imai, Hidehiko Masuhara, Tomoyuki Aotani

Tokyo Institute of Technology, Japan

1/13

Background: Introduction to Live Programming
Q. What is a live programming environment?

2/13

Background: Introduction to Live Programming
Q. What is a live programming environment?

A. A programming environment, which provides immediate
feedback on source code changes.

2/13

Background: Introduction to Live Programming

Q. What is a live programming environment?

A. A programming environment, which provides immediate

feedback on source code changes.

Traditional Programming
All transitions are manual.

Edit (» Compile
Check (e Run

2/13

Background: Introduction to Live Programming
Q. What is a live programming environment?

A. A programming environment, which provides immediate
feedback on source code changes.

Traditional Programming
All transitions are manual.

Edit (» Compile
Check (e Run

Live Programming

m Edit => Live System

m Live System => Check

are automatically done.

Edit

>

Live System
(compile/run)

N

/

Check

2/13

Background: Two Styles of Live Programming

We focus on “1. Re-evaluate style.”

1. Re-evaluate 2. Fix-and-continue
Environments re-evaluate We can change the source
the program when source code of running programs.
code or data changes. (by hot-swapping)

m YinYang [McDirmid, 2013] m Smalltalk

m Apple Swift’s Playground m Scratch

m Our Prototype Shiranui m Sonic Pi

Ay

3/13

Our Motivation: Make Live Programming Practical

Our Motivation
We want to use live programming environments in
practical programming, which require:

m many functions and experiments,
m ensuring that the program works correctly.

Currently,

Live programming environments are mainly used for:
B running samples,
m small programs,
m checking library functions’ behavior.

4/13%

Question:

Q. Are there any problems when we use existing
re-evaluate style live programming environments in
practical programming?

5/13

Question:

Q. Are there any problems when we use existing
re-evaluate style live programming environments in
practical programming?

A. Yes, there are (at least) three problems:
1. single entry point,
2. no support for testing frameworks, and
3. no support for making small sub problems.

5/13

Problem 1: Single Entry Point

Existing live programming environments have only one
entry point.

6/13

Problem 1: Single Entry Point

Existing live programming environments have only one
entry point.

It's like a big “main” function.

void main() {

1 func sum_ave(n: Int) -> Int {

2 var r = @ (3 times)

3 foriin (@ ... n) {

4 ro4=i (10006... (@)
5 }

6 return r / n (2 times)

7}

8 sum_ave(10000) // takes time 5000

9 sum_ave(3) 2

010 sum_ave(@) ®Execution was interrupted,... © error
11 sum_ave(50)

}

6/13

Problem 1: Single Entry Point

Existing live programming environments have only one
entry point.

It’s like a big “main” function. It causes:

.) 1. long feedback loop,
void main() {

1 func sum_ave(n: Int) -> Int {

2 var r = @ (3 times)
3 foriin (@ ... n) {
4 [(10006... (@
— 2. combined runtime log,
CH!
6 return r / n (2 times)
7}
8 sum_ave(10000) // takes time 5000
9 sum_ave(3) 2
00 sum_ave (@) ©Execution was interrupted,... e error
11 sum_ave(50) 3. lost feedback.

}

=> Not suitable for large programs.

6/13

Problem 1: Single Entry Point

Existing live programming environments have only one
entry point.

It’s like a big “main” function. It causes:

1. long feedback loop,

void main() { m ex. We cannot get

1 func sum_ave(n: Int) -> Int {

2 var r = @ (3 times) Sum_ave(S)'s
s foriin (@ ... m { feedback before
4 ro4=i (10006... (e

sum_ave(10000).

- 2. combined runtime log,

5 3
6 return r / n (2 times)
7}
8 sum_ave(10000) // takes time 5000
9 sum_ave(3) 2
00 sum_ave (@) ©Execution was interrupted,... e error
11 sum_ave(50) 3. lost feedback.

}

=> Not suitable for large programs.

6/13

Problem 1: Single Entry Point

Existing live programming environments have only one
entry point.

It’s like a big “main” function. It causes:

1. long feedback loop,

void main() { m ex. We cannot get

1 func sum_ave(n: Int) -> Int {

» varr=0 (3 times) sum_ave(3)’s
s foriin (@ ... m { feedback before
4 r+=1 (10006...

sum_ave(10000).

- 2. combined runtime log,

5 3 ’
Y peturnr / n R B ex. sum_ave(m@@@)'s
7 log and sum_ave(3)’s

7}
i 5000
8 sum_ave(10000) // takes time one are merged.

9 sum_ave(3) 2
010 sum_ave(@) @Execution was interrupted,... © error

11 sum_ave(50) 3. lost feedback.

}

=> Not suitable for large programs.

6/13

Problem 1: Single Entry Point

Existing live programming environments have only one
entry point.

It’s like a big “main” function. It causes:

1. long feedback loop,

void main() { m ex. We cannot get

1 func sum_ave(n: Int) -> Int {

var r = @ (3 times) Sum_ave(S)'s
for i in €@ ... m { feedback before
r+=1 (10006...

sum_ave(10000).

_ 2. combined runtime log,

5 } ’
Y return /N 2 times) m ex. sum_ave(10000)’s

log and sum_ave(3)’s

7}
i 5000
8 sum_ave(10000) // takes time one are merged.

9 sum_ave(3) 2
010 sum_ave (@) ©Execution was interrupted,... o error
11 sum_ave(50) 3. lost feedback.

}

m ex. sum_ave(0)
causes error, and
sum_ave(50)’s
feedback is lostg /13

=> Not suitable for large programs.

Problem 2: No Support for Testing Frameworks
“Tests” in live programming environments are transient.
m We need to check all return values by ourselves when
we changes source code, because it might change
existing functions’ behavior.

let x = 3 3| let x = 3 <) let x = 3 3] let x = 3 <)

let y =3 3 lety =3 3 let y = 1000 1000 let y = 1000 1000

X +y 6 X +y 6 X +y 1003 X + Yy 1003
1: coding 2: checking 3: coding 4: checking

If we add testing frameworks like JUnit, “liveness” is lost.
m Constructing expected values is not “live way.”
m Promoting experiments to testcases is not supported.

1 func sum(n : Int) -> Int { 1 func sum(n : Int) -> Int {

func sum(n : Int) -> Int { 2 var r = [} (2 times) 2 var r = @ @ times)

var r =0 (2 times) s foriin(@...n{ 3 for i in (0 ... m) {

for iin (0 ... m) { 4 ro=i (10005 times) 4 P (10005 times)

roa=i (10005 times) U]) 5 1

’}:etum o o imes %} return r/n (2 times) é return r/n (2 times)
} 4 sum(10000) }
<un(10000) 5000 9 sun(3) 8 assert(sum(10000) == 5000)
sun(3) 2 1 o sum(3) 2

1+ check 2: copy value 3: paste value/ 13

Problem 3: No Support to Make Small Sub Problem

Generally speaking, (not only live programming)

When debugging large programs, we must create small
programs which reproduce the bugs.

m It is not easy especially when programs contain
first-class function.

func fact(n: Int, cont: Int -> Int) -> Int {

-

2 if n==0 {

3 return cont(l) // « What occured? 56

4 }else{

5 return fact(n-1, (10 times)

6 cont:{r in cont(r + n)}) (10 times)

7 } //incorrect t

8}

9print(fact(1@, cont: {r in r})) (2 times) O)
56

8/13

Our Solution and Design

We show our prototype named Shiranui.
Problems and Solutions
1. Single entry point
=> Isolated execution point

2. No support for unit testing
=> Integrated unit testing features

3. No support for making small sub problems
=> Shortcut to take function call out from runtime log

9/13

Solution 1: Isolated Execution Point
Shiranui executes some parts of programs in isolated

interpreters parallelly. It enables:
m faster feedback,
m simpler execution logs,
m not propagating errors

i 1#+ sum_ave(10000) -> 5000;
2 #+ sum_ave(3) -> 2;
3 #+ sum_ave(0) -> "Division by 0";
4 #+ sum_ave(5) -> 3;
5
6 let sum_ave = \(n){
7 let r = ref 0;
8 for i in [1..n]{

9 # 'r ->0,1,3,6,10;
10 r<-lIr+i;

11

12 return !'r / n;

13 %(

10/13

Solution 1: Isolated Execution Point
Shiranui executes some parts of programs in isolated

interpreters parallelly. It enables:
m faster feedback,
m simpler execution logs,
m not propagating errors

|1 #+ sum_ave(10000) -> 5000; 1. Virtually duplicate programs
2 #+ sum_ave(3) -> 2; : :
3 #+ sun_ave(0) —> "Division by 0": for each isolated execution
4 #+ sum_ave(5) -> 3; point (L:1,2,3,4).
5
6 let sum_ave = \(n){
7 let r = ref 0;
8 for i in [1..n]{

9 # Ir ->0,1,3,6,10;
10 r<-Ir+i;
1
12 return !'r / n;
13%;
1let sum_ave = \(n){ 1 let sum_ave = \(n){
2 // copied body 2 // copied body I let sum_ave = \(n){ 11et sun_ave = \(n){
3 }; 3 }; %}.// copied body g}.// copied body
4 sum_ave(10000); 4 sum_ave(3); 4 sum_ave(0); 4 sun_ave(5);

/13

Solution 1: Isolated Execution Point
Shiranui executes some parts of programs in isolated

interpreters parallelly. It enables:
m faster feedback,
m simpler execution logs,
m not propagating errors

|1 #+ sum_ave(10000) -> 5000; 1. Virtually duplicate programs

2 #+ sum_ave(3) -> 2; ; ;
3 #+ sun ave(0) > "Division by 0': TOr €ach isolated execution

g#+ sum_ave(5) -> 3; point (L:1,2,3,4).
6 let sum_ave = \(n){ 2. Run programs parallelly and

7 let r = ref 0;

8 for & in [1..alf record logs separately.

9 # 'r ->0,1,3,6,10;
10 r<-Ir+i;
1
12 return !'r / n;
13};
1let sum_ave = \(n){ 1 let sum_ave = \(n){
2 // copied body 2 // copied body I let sum_ave = \(n){ 11et sun_ave = \(n){
3 }; 3 ; %}.// copied body g}.// copied body
4 sum_ave(10000); 4 sum_ave(3); 4 sun_ave(0); 4 sum_ave(5);

/13

Solution 1: Isolated Execution Point
Shiranui executes some parts of programs in isolated

interpreters parallelly. It enables:
m faster feedback,
m simpler execution logs,
m not propagating errors

|1 #+ sum_ave(10000) -> 5000; 1. Virtually duplicate programs

2 #+ sum_ave(3) -> 2; : .
3 #+ sun_ave(0) —> "Division by 0": for each isolated execution

4 #+ sum_ave(5) -> 3; point (L:1,2,3,4).
5
6 let sum_ave = \(n){ 2. Run programs parallelly and
7 let r = ref 0;
8 for & in [1..alf record logs separately.
g B ir ->9,1,3,6,10; 3. Give feedback to users as
10 r <-Ir+1i; .
1M1} threads are finished.
12 return !'r / n;
13};
1let sum_ave = \(n){ 1 let sum_ave = \(n){
2 // Copied bOdY 2 // COPiEd bOdY 1let sum_ave = \(n){ 1let sum_ave = \(n){
3 }; 3 }; %}.// copied body g}.// copied body
4 sum_ave(10000); 4 sum_ave(3); 4 sum_ave(0); 4 sum_ave(5);

/13

Solution 2: Integrated Unit Testing Features

Unit testcases are expressed as isolated execution points.

Normal execution point
m ex. twice(1) returns 1.

1 #+ twice(1) -> 1;
2 #- twice(2) -> 4:

3 #- twice(3) -> 6 || 9: Successful testcase

4 3 m ex. twice(2) should return 4
5 let twice = \(n){ and actually returns 4.

] return n*n; Failed testcase

1}; m ex. twice(3) should return 6

but actually returns 9.

11/13

Solution 2: Integrated Unit Testing Features

Unit testcases are expressed as isolated execution points.

) Normal execution point
1 #+ tw;ce('l) -> 1;4/ m ex. twice(1) returns 1.
2 #- twice(2) -> 4;

3 #- twice(3) -> 6 || 9: Successful testcase

4 3 m ex. twice(2) should return 4
5 let twice = \(n){ and actually returns 4.

] return n*n; Failed testcase

1}; m ex. twice(3) should return 6

but actually returns 9.

11/13

Solution 2: Integrated Unit Testing Features

Unit testcases are expressed as isolated execution points.

Normal execution point
1 #+ twice(1) -> 1,4/ : P

m ex. twice(1) returns 1.

2#- twice(2) -> 4; e——
3#- twice(3) -> 6 || 9; Successful testcase

4 m ex. twice(2) should return 4
51let twice = \(n){ and actually returns 4.

] return n*n; Failed testcase

1}; m ex. twice(3) should return 6

but actually returns 9.

11/13

Solution 2: Integrated Unit Testing Features

Unit testcases are expressed as isolated execution points.

Normal execution point
1 #+ twice(1) -> 1,4/ : P

m ex. twice(1) returns 1.

2#- twice(2) -> 4; e——
3#- twice(3) -> 6 || 9; Successful testcase

4 m ex. twice(2) should return 4
51let twice = \(n){ and actually returns 4.

] return n*n; Failed testcase

1}; m ex. twice(3) should return 6

but actually returns 9.

11/13

Solution 2: Integrated Unit Testing Features

Unit testcases are expressed as isolated execution points.

Normal execution point
1 #+ twice(1) -> 1,4/ : P

m ex. twice(1) returns 1.

2#- twice(2) -> 4; e——
3#- twice(3) -> 6 || 9; Successful testcase

4 m ex. twice(2) should return 4
51let twice = \(n){ and actually returns 4.

] return n*n; Failed testcase

1}; m ex. twice(3) should return 6

but actually returns 9.

m Shortcuts to promote experiment to unit testcase.
#+ s(3) -> [1,2];

11/13

Solution 2: Integrated Unit Testing Features

Unit testcases are expressed as isolated execution points.

Normal execution point
1 #+ twice(1) -> 1,4/ : P

m ex. twice(1) returns 1.

2#- twice(2) -> 4; e——
3#- twice(3) -> 6 || 9; Successful testcase

4 m ex. twice(2) should return 4
51let twice = \(n){ and actually returns 4.

] return n*n; Failed testcase

1}; m ex. twice(3) should return 6

but actually returns 9.

m Shortcuts to promote experiment to unit testcase.
correct
#+ s(3) -> [1,2]; ——e #- s(3) -> [1,2];
Employ returned value as
the expected value.

11/13

Solution 2: Integrated Unit Testing Features

Unit testcases are expressed as isolated execution points.

Normal execution point
1 #+ twice(1) -> 1;4/ P

m ex. twice(1) returns 1.

2 #- twice(2) -> 4; e——
3#- twice(3) -> 6 || 9; Successful testcase

4 m ex. twice(2) should return 4
51let twice = \(n){ and actually returns 4.

] return n*n; Failed testcase

1}; m ex. twice(3) should return 6

but actually returns 9.

m Shortcuts to promote experiment to unit testcase.
correct

#+ s(3) -> [1,2]; #- s(3) -> [1,2];

Employ returned value as

the expected value.

E;Wiiilwzkka

Input expected value by
hands. 11/13

incorrect

Solution 2: Integrated Unit Testing Features

Unit testcases are expressed as isolated execution points.

Normal execution point
1 #+ twice(1) -> 1,4/ : P

m ex. twice(1) returns 1.

2#- twice(2) -> 4; e——
3#- twice(3) -> 6 || 9; Successful testcase

4 m ex. twice(2) should return 4
51let twice = \(n){ and actually returns 4.

] return n*n; Failed testcase

1}; m ex. twice(3) should return 6

but actually returns 9.

m Shortcuts to promote experlment to unit testcase.
correct

#+ s(3) -> [1,2]; - s(3) -> [1,2]1;

. Employ returned value as
partially correct . the expected value.
#-s(3) -> [1,2,3] || [1,2]; INCOrrect™ g g(3) -> |j|

Modify the parts of Input expected value by
returned value. hands. 11/13

Solution 3: Shortcut to Take Function Call Out

From Logs
We can generate small sub problems by taking out
function call, which seems to cause the wrong result.
m Even function value can be serialized.

#+ fact(2,id) -> 4;<€¢——— 1. Select execution points to inspect.

let fact = \fact(n, t , o
e#* 2c_> 2’1?;“‘! —),{ 2. Show history of n, select bindings.

ifn=20 { m ex. choose bindings where n = 0.

1

2

3

4 n

5 return cont (1)4, N\

6 } 3. Select function call and take it out
7

8

9

0

m ex. choose cont(1) and copy-paste.

4. Debug the new execution point.

m Generated execution point is
small sub problem.

11 #+ <|$(cont->$(cont->$()id,n->2)re,n->1)re|>(1) -> 4;
We can write unit testcases for anonymous function1s

2/13

Conclusion. Questions and Live Coding Time.

Conclusion
We designed a set of unit testing features, which goes
well with live programming:

m Isolated execution points for large programs,
m Unit testing features for sound programs,

m Making sub-problems from runtime information for
easier debugging

Q&A and live coding time with Shiranui.

15/13

