
Making Live Programming Practical by
Bridging the Gap between

Trial-and-Error Development
and Unit Testing

Tomoki Imai, Hidehiko Masuhara, Tomoyuki Aotani

Tokyo Institute of Technology, Japan

1/13



Background: Introduction to Live Programming
Q. What is a live programming environment?

A. A programming environment, which provides immediate
feedback on source code changes.

Traditional Programming
All transitions are manual.

Edit Compile

RunCheck

Live Programming

Edit => Live System
Live System => Check

are automatically done.

Edit Live System
(compile/run)

Check

2/13



Background: Introduction to Live Programming
Q. What is a live programming environment?

A. A programming environment, which provides immediate
feedback on source code changes.

Traditional Programming
All transitions are manual.

Edit Compile

RunCheck

Live Programming

Edit => Live System
Live System => Check

are automatically done.

Edit Live System
(compile/run)

Check

2/13



Background: Introduction to Live Programming
Q. What is a live programming environment?

A. A programming environment, which provides immediate
feedback on source code changes.

Traditional Programming
All transitions are manual.

Edit Compile

RunCheck

Live Programming

Edit => Live System
Live System => Check

are automatically done.

Edit Live System
(compile/run)

Check

2/13



Background: Introduction to Live Programming
Q. What is a live programming environment?

A. A programming environment, which provides immediate
feedback on source code changes.

Traditional Programming
All transitions are manual.

Edit Compile

RunCheck

Live Programming

Edit => Live System
Live System => Check

are automatically done.

Edit Live System
(compile/run)

Check
2/13



Background: Two Styles of Live Programming
We focus on “1. Re-evaluate style.”

1. Re-evaluate
Environments re-evaluate
the program when source
code or data changes.

YinYang [McDirmid, 2013]
Apple Swift’s Playground
Our Prototype Shiranui

2. Fix-and-continue
We can change the source
code of running programs.
(by hot-swapping)

Smalltalk
Scratch
Sonic Pi

3/13



Our Motivation: Make Live Programming Practical

Our Motivation
We want to use live programming environments in
practical programming, which require:

many functions and experiments,
ensuring that the program works correctly.

Currently,
Live programming environments are mainly used for:

running samples,
small programs,
checking library functions’ behavior.

4/13



Question:

Q. Are there any problems when we use existing
re-evaluate style live programming environments in
practical programming?

A. Yes, there are (at least) three problems:
1. single entry point,
2. no support for testing frameworks, and
3. no support for making small sub problems.

5/13



Question:

Q. Are there any problems when we use existing
re-evaluate style live programming environments in
practical programming?

A. Yes, there are (at least) three problems:
1. single entry point,
2. no support for testing frameworks, and
3. no support for making small sub problems.

5/13



Problem 1: Single Entry Point

Existing live programming environments have only one
entry point.

It’s like a big “main” function. It causes:
1. long feedback loop,

ex. We cannot get
sum_ave(3)’s
feedback before
sum_ave(10000).

2. combined runtime log,

ex. sum_ave(10000)’s
log and sum_ave(3)’s
one are merged.

3. lost feedback.

ex. sum_ave(0)
causes error, and
sum_ave(50)’s
feedback is lost.

=> Not suitable for large programs.

6/13



Problem 1: Single Entry Point

Existing live programming environments have only one
entry point.

It’s like a big “main” function.

It causes:
1. long feedback loop,

ex. We cannot get
sum_ave(3)’s
feedback before
sum_ave(10000).

2. combined runtime log,

ex. sum_ave(10000)’s
log and sum_ave(3)’s
one are merged.

3. lost feedback.

ex. sum_ave(0)
causes error, and
sum_ave(50)’s
feedback is lost.

=> Not suitable for large programs.

6/13



Problem 1: Single Entry Point

Existing live programming environments have only one
entry point.

It’s like a big “main” function. It causes:
1. long feedback loop,

ex. We cannot get
sum_ave(3)’s
feedback before
sum_ave(10000).

2. combined runtime log,

ex. sum_ave(10000)’s
log and sum_ave(3)’s
one are merged.

3. lost feedback.

ex. sum_ave(0)
causes error, and
sum_ave(50)’s
feedback is lost.

=> Not suitable for large programs.

6/13



Problem 1: Single Entry Point

Existing live programming environments have only one
entry point.

It’s like a big “main” function. It causes:
1. long feedback loop,

ex. We cannot get
sum_ave(3)’s
feedback before
sum_ave(10000).

2. combined runtime log,

ex. sum_ave(10000)’s
log and sum_ave(3)’s
one are merged.

3. lost feedback.

ex. sum_ave(0)
causes error, and
sum_ave(50)’s
feedback is lost.

=> Not suitable for large programs.

6/13



Problem 1: Single Entry Point

Existing live programming environments have only one
entry point.

It’s like a big “main” function. It causes:
1. long feedback loop,

ex. We cannot get
sum_ave(3)’s
feedback before
sum_ave(10000).

2. combined runtime log,
ex. sum_ave(10000)’s
log and sum_ave(3)’s
one are merged.

3. lost feedback.

ex. sum_ave(0)
causes error, and
sum_ave(50)’s
feedback is lost.

=> Not suitable for large programs.

6/13



Problem 1: Single Entry Point

Existing live programming environments have only one
entry point.

It’s like a big “main” function. It causes:
1. long feedback loop,

ex. We cannot get
sum_ave(3)’s
feedback before
sum_ave(10000).

2. combined runtime log,
ex. sum_ave(10000)’s
log and sum_ave(3)’s
one are merged.

3. lost feedback.
ex. sum_ave(0)
causes error, and
sum_ave(50)’s
feedback is lost.

=> Not suitable for large programs.

6/13



Problem 2: No Support for Testing Frameworks
“Tests” in live programming environments are transient.

We need to check all return values by ourselves when
we changes source code, because it might change
existing functions’ behavior.

1: coding 2: checking 3: coding 4: checking

If we add testing frameworks like JUnit, “liveness” is lost.
Constructing expected values is not “live way.”
Promoting experiments to testcases is not supported.

1: check 2: copy value 3: paste value7/13



Problem 3: No Support to Make Small Sub Problem
Generally speaking, (not only live programming)
When debugging large programs, we must create small
programs which reproduce the bugs.

It is not easy especially when programs contain
first-class function.

8/13



Our Solution and Design

We show our prototype named Shiranui.

Problems and Solutions
1. Single entry point
=> Isolated execution point

2. No support for unit testing
=> Integrated unit testing features

3. No support for making small sub problems
=> Shortcut to take function call out from runtime log

9/13



Solution 1: Isolated Execution Point
Shiranui executes some parts of programs in isolated
interpreters parallelly. It enables:

faster feedback,
simpler execution logs,
not propagating errors

1. Virtually duplicate programs
for each isolated execution
point (L:1,2,3,4).

2. Run programs parallelly and
record logs separately.

3. Give feedback to users as
threads are finished.

10/13



Solution 1: Isolated Execution Point
Shiranui executes some parts of programs in isolated
interpreters parallelly. It enables:

faster feedback,
simpler execution logs,
not propagating errors

1. Virtually duplicate programs
for each isolated execution
point (L:1,2,3,4).

2. Run programs parallelly and
record logs separately.

3. Give feedback to users as
threads are finished.

10/13



Solution 1: Isolated Execution Point
Shiranui executes some parts of programs in isolated
interpreters parallelly. It enables:

faster feedback,
simpler execution logs,
not propagating errors

1. Virtually duplicate programs
for each isolated execution
point (L:1,2,3,4).

2. Run programs parallelly and
record logs separately.

3. Give feedback to users as
threads are finished.

10/13



Solution 1: Isolated Execution Point
Shiranui executes some parts of programs in isolated
interpreters parallelly. It enables:

faster feedback,
simpler execution logs,
not propagating errors

1. Virtually duplicate programs
for each isolated execution
point (L:1,2,3,4).

2. Run programs parallelly and
record logs separately.

3. Give feedback to users as
threads are finished.

10/13



Solution 2: Integrated Unit Testing Features
Unit testcases are expressed as isolated execution points.

Normal execution point
ex. twice(1) returns 1.

Successful testcase
ex. twice(2) should return 4
and actually returns 4.

Failed testcase
ex. twice(3) should return 6
but actually returns 9.

Shortcuts to promote experiment to unit testcase.

Modify the parts of
returned value.

Employ returned value as
the expected value.

Input expected value by
hands.

correct

incorrect
partially correct

11/13



Solution 2: Integrated Unit Testing Features
Unit testcases are expressed as isolated execution points.

Normal execution point
ex. twice(1) returns 1.

Successful testcase
ex. twice(2) should return 4
and actually returns 4.

Failed testcase
ex. twice(3) should return 6
but actually returns 9.

Shortcuts to promote experiment to unit testcase.

Modify the parts of
returned value.

Employ returned value as
the expected value.

Input expected value by
hands.

correct

incorrect
partially correct

11/13



Solution 2: Integrated Unit Testing Features
Unit testcases are expressed as isolated execution points.

Normal execution point
ex. twice(1) returns 1.

Successful testcase
ex. twice(2) should return 4
and actually returns 4.

Failed testcase
ex. twice(3) should return 6
but actually returns 9.

Shortcuts to promote experiment to unit testcase.

Modify the parts of
returned value.

Employ returned value as
the expected value.

Input expected value by
hands.

correct

incorrect
partially correct

11/13



Solution 2: Integrated Unit Testing Features
Unit testcases are expressed as isolated execution points.

Normal execution point
ex. twice(1) returns 1.

Successful testcase
ex. twice(2) should return 4
and actually returns 4.

Failed testcase
ex. twice(3) should return 6
but actually returns 9.

Shortcuts to promote experiment to unit testcase.

Modify the parts of
returned value.

Employ returned value as
the expected value.

Input expected value by
hands.

correct

incorrect
partially correct

11/13



Solution 2: Integrated Unit Testing Features
Unit testcases are expressed as isolated execution points.

Normal execution point
ex. twice(1) returns 1.

Successful testcase
ex. twice(2) should return 4
and actually returns 4.

Failed testcase
ex. twice(3) should return 6
but actually returns 9.

Shortcuts to promote experiment to unit testcase.

Modify the parts of
returned value.

Employ returned value as
the expected value.

Input expected value by
hands.

correct

incorrect
partially correct

11/13



Solution 2: Integrated Unit Testing Features
Unit testcases are expressed as isolated execution points.

Normal execution point
ex. twice(1) returns 1.

Successful testcase
ex. twice(2) should return 4
and actually returns 4.

Failed testcase
ex. twice(3) should return 6
but actually returns 9.

Shortcuts to promote experiment to unit testcase.

Modify the parts of
returned value.

Employ returned value as
the expected value.

Input expected value by
hands.

correct

incorrect
partially correct

11/13



Solution 2: Integrated Unit Testing Features
Unit testcases are expressed as isolated execution points.

Normal execution point
ex. twice(1) returns 1.

Successful testcase
ex. twice(2) should return 4
and actually returns 4.

Failed testcase
ex. twice(3) should return 6
but actually returns 9.

Shortcuts to promote experiment to unit testcase.

Modify the parts of
returned value.

Employ returned value as
the expected value.

Input expected value by
hands.

correct

incorrect

partially correct

11/13



Solution 2: Integrated Unit Testing Features
Unit testcases are expressed as isolated execution points.

Normal execution point
ex. twice(1) returns 1.

Successful testcase
ex. twice(2) should return 4
and actually returns 4.

Failed testcase
ex. twice(3) should return 6
but actually returns 9.

Shortcuts to promote experiment to unit testcase.

Modify the parts of
returned value.

Employ returned value as
the expected value.

Input expected value by
hands.

correct

incorrect
partially correct

11/13



Solution 3: Shortcut to Take Function Call Out
From Logs

We can generate small sub problems by taking out
function call, which seems to cause the wrong result.

Even function value can be serialized.

1. Select execution points to inspect.

2. Show history of n, select bindings.
ex. choose bindings where n = 0.

3. Select function call and take it out
ex. choose cont(1) and copy-paste.

4. Debug the new execution point.
Generated execution point is
small sub problem.

We can write unit testcases for anonymous functions.
12/13



Conclusion. Questions and Live Coding Time.

Conclusion
We designed a set of unit testing features, which goes
well with live programming:

Isolated execution points for large programs,
Unit testing features for sound programs,
Making sub-problems from runtime information for
easier debugging

Q&A and live coding time with Shiranui.

13/13


