Making Live Programming Practical by Bridging
the Gap between Trial-and-Error Development and Unit Testing

Tomoki Imai

Tokyo Institute of Technology, Japan
imai.t.af@m.titech.ac.jp

Abstract

Live programming environments are powerful experimental
tools that enable programmers to write programs in a trial-
and-error way thanks to its quick feedback. Since the feed-
back includes intermediate data such as a control flow and a
history of variable bindings, the live programming environ-
ments integrate debugging into editing. One of the disadvan-
tages of such interactive systems is that tests are transient. If
we wrote persistent tests using an automated testing frame-
work like JUnit, we could not fully enjoy “liveness.” This
is because we need to write proper parameters and expected
values in advance.

We develop Shiranui, a live programming environment
with unit testing features. In Shiranui, the programmers can
check functions’ behaviors in a lively manner and then con-
vert the results into persistent test cases. One of the features
enables the programmers to make a test case from an in-
termediate result that are found in a debugging process. It
makes constructing error-reproducing-tests easier.

Categories and Subject Descriptors D.2.6 [Software En-
gineering]: Programming Environments—Interactive Envi-
ronments

General Terms Languages, Human Factors

Keywords Live Programming, Testing, Debugging

1. Proposals

We propose a set of features that enable unit testing in a live
programming environment without losing its liveness. As a
proof of concept, we develop live programming environment
Shiranui and implement our proposals on top of it.

Hidehiko Masuhara

Tokyo Institute of Technology, Japan
masuhara@acm.org

Tomoyuki Aotani

Tokyo Institute of Technology, Japan
aotani@is.titech.ac.jp

T#+ fib(1) > 1;

24- fib(3) -> 3;

3#- fib(4) -> 5 || 4;
4

5// NOTE: 11235

6 let fib = \fib(n){

7 ¥ n ->4,3,2,1;

8 ifn=0o0rn=1{

nat [121,122] =
n at [130,131] =
fib at [167,170]
n at [171,172] = 4

5ib(n—1) at [167,176] = 3

4
4
= <|a=$(fib->a)fib|>

95

10 }else{

1 f@ib(n-1) + 1; //BUG!
12

13%

Figure 1. Screenshot of Shiranui

From the viewpoint of live programming research, our
proposals enable live programming for practical software
development, which is typically difficult for other live pro-
gramming environments.

From the viewpoint of unit testing research, we propose
novel techniques for making test cases in an interactive way,
and for making test cases for anonymous functions by using
intermediate execution results.

1.1 Overview of Shiranui

Shiranui is a live programming environment similar to
YinYang [2] and Apple Swift [3]]. It watches changes in
the source code editor, re-executes the whole program im-
mediately when it detects a change, and shows the final and
intermediate results of the execution.

Figure[I]is a screenshot of Shiranui, consisting of a source
code editor (left) and an environment view (right). The first
three lines in the editor are called flylines, which serve as
experimental expressions or test cases. An experimental ex-
pression is what the programmer wants to check its behavior.
A test case is a pair of an expression to evaluate and its ex-
pected value. The difference between the two is just whether
the programmer sets its expected value or not. The flylines
also serve as documentation of functions.

We newly design not only the user interface, but also the
language. Shiranui language is a dynamically-typed func-
tional language with a domain-specific language for serial-
izing compounded data.

+ 1 ->1;
#- c_in_mod_n(4) -> 2;
(n->3)multi|>(4,5) -> 2;
(n->11)add|>(3,4) -> 7;
$(add->$(n->4)add,multi->$(n->4)multi)complex_calc|>(4,4,3) -> 0;
let calc_in_mod_n = \calc_in_mod_n(n){

let multi = \multi(a,b){

(a*b) % n;

A|A A O |—

1
2
3
4
5
6
7
8

i
10 let add = \add(a,b){
n (atb) % n;

13 let complex_calc = \complex_calc(a,b,c){
14 add(multi(a,b),multi(b,c));

i
16 complex_calc(3,5,3);

Figure 2. Test Cases for Nested Functions

1.2 Testing Features in Shiranui

Unlike other live programming environments[ﬂ Shiranui sup-
ports the following features to bridge the gap between trial-
and-error development and unit testing:

1. an editor command to convert experimental expressions
to persistent unit test cases, and

2. an editor command to employ an intermediate result of
an execution as a part of a test case.

With the first feature, the programmer can develop a func-
tion with experimental expressions to examine the function’s
behavior, and once if it shows an expected behavior, he or
she can promote it to a new test case.

With the second feature, making test cases becomes a
part of process for debugging and even nested or anony-
mous functions can be directly tested. It lets the program-
mer extract a function call with run-time arguments in an
execution log as a new test case. This technique is useful for
debugging because it can generate small subproblems. Shi-
ranui has a domain-specific language to represent data struc-
tures and function objects in a printable form even if the data
has cycles, sharing, or references to lexical variables. It en-
ables the programmer to create test cases involving nested or
anonymous functions as shown in Figure 2]

2. Implementation

Shiranui consists of the user interface, the language inter-
preter and a server that connects the user interface with the
interpreter. The user interface is implemented as an Emacs
plugin (900 LoC). The interpreter and server are developed
in C++ (7,200 LoC). Emacs sends an event to the server each
time the user hits a key. The interpreter evaluates a program
and the server sends back a result to Emacs.
Shiranui is an open-source software available at

https://github.com/tomoki/Shiranui.

! Apple announced that Apple Swift 2 and its live programming environ-
ment called Playgrounds will be able to “Create new tests and verify they
work before promoting into your test suite [3].” We independently proposed
our testing features in Shiranui [1].

3. Presenter

Tomoki Imai is a master’s course student at Department of
Mathematical and Computing Sciences, Tokyo Institute of
Technology. He is a project leader of Shiranui and imple-
mented the entire system.

4. Contents of Demonstration

We demonstrate how Shiranui’s live programming features
helps the programmers in software development. In addition,
we illustrate what makes Shiranui different from existing
interactive systems and unit testing frameworks.

Below is a scenario of the demonstration.

4.1 Whatis Live Programming?

First, we introduce live programming and its advantages by
using a few examples.

4.2 Why (Existing) Live Programming is NOT Usable
for Practical Development?

Next, we explain the motivation and challenges, namely
e live programming for practical software development,
and

e testing frameworks in existing live programming envi-
ronments.

4.3 Our Solution and Design of Shiranui

We show our proposals along with a demonstration of Shi-
ranui. From the demonstration, the audience will see a

® design of unit testing features for live programming.

4.4 Free Live Coding Demos with Shiranui

Finally, we close our demonstration with a live coding ses-
sion. We expect some advice, questions from the audience.
We plan the following functions as subjects:

e simple arithmetic functions (e.g., power, factorial, and
Fibonacci numbers),

e higher-order functions (e.g., repeat, foldr, map, and fil-
ter), and

e algorithmic problems.

References

[1] T. Imai, H. Masuhara, and T. Aotani. Shiranui: Test-friendly
Live Programming Environment. In The 31st JSSST Annual
Conference, Sep. 2014.

[2] S. McDirmid. Usable Live Programming. Proceedings of
the 2013 ACM international symposium on New ideas, new
paradigms, and reflections on programming & software - On-
ward! ’13, pages 53-62, 2013.

[3] Apple Inc. Swift - Overview - Apple Developer.

https://developer.apple.com/swift/.
Accessed 2015-6-30.

https://github.com/tomoki/Shiranui
https://developer.apple.com/swift/

	Proposals
	Overview of Shiranui
	Testing Features in Shiranui

	Implementation
	Presenter
	Contents of Demonstration
	What is Live Programming?
	Why (Existing) Live Programming is NOT Usable for Practical Development?
	Our Solution and Design of Shiranui
	Free Live Coding Demos with Shiranui

